
DEPARTMENTOFCOMPUTERSCIENCE
COLLEGEOFSCIENCES
OLD DOMINION UNIVERSITY
NORFOLK,VIRGINIA 23529-0162

•High-performance Monitoring Architecture for

Large-scale Distributed Systems Using Event Filtering

By //,' ':;_' /

Dr. K. Maly

Department of Computer Science

FINAL REPORT

For the period ending August 15, 1998

Prepared for

NASA Langley Research Center

Attn.: Mr. Joseph Murray
Grant Officer

Mail Stop 126

Hampton, VA 23681-0001

And

NASA Langley Research Center
Attn.: Mr. Robert. W. Wills

Technical Officer

Mail Stop 152-D

Hampton, VA 23681-0001

Under

NASA Grant NAG 1-908 - Supplement No. 16

ODURF Project No. 187264

October 1998



DEPARTMENTOF COMPUTERSCIENCE
COLLEGEOF SCIENCES
OLD DOMINION UNIVERSITY
NORFOLK,VIRGINIA 23529-0162

High-performance Monitoring Architecture for

Large-scale Distributed Systems Using Event Filtering

By

Dr. K. Maly

Department of Computer Science

FINAL REPORT

For the period ending August 15, 1998

Prepared for

NASA Langley Research Center

Attn.: Mr. Joseph Murray
Grant Officer

Mail Stop 126

Hampton, VA 23681-0001

And

NASA Langley Research Center
Attn.: Mr. Robert. W. Wills

Technical Officer

Mail Stop 152-D

Hampton, VA 23681-0001

Under

NASA Grant NAG 1-908 - Supplement No. 16

ODUR_ Project No. 187264

Submitted by

Old Dominion University Research Foundation
800 West 46 th Street

Norfolk, VA 23508

October 1998



Designing a High Speed Network: An Application-oriented
Approach

K. Maly

Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

Email: maly@cs.odu.edu
(757) 683-4817

Fax: (757) 683-4900

Final Report

Submitted to:

Wayne Bryant, FETD
Assistant DivisionChair
NAG-1-908, ODURF Project No. 187264

National Aeronautics and Space Administration
Research Support Contracts Branch
Langley Research Center - Mail Stop 126
Hampton, VA 23681-2199



High-performance Monitoring Architecture for Large-scale
Distributed Systems Using Event Filtering

Ehab S. AI-Shaer
Department of Computer Science

Old Dominion University
Norfolk, Virginia, 23529-0162

ehab@cs.odu.edu

Abstract
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale
distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system
components during its execution or interaction with external objects (e.g. users or processes). Monitoring
such events is necessary for observing the run-time behavior of LSD systems and providing status
information required for debugging, tuning and managing such applications. However, correlated events are
generated concurrently and could be distributed in various locations in the applications environment which
complicates the management decisions process and thereby makes monitoring LSD systems an intricate
task.

We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify
interesting local and global events and disseminate the monitoring information to the corresponding end-
points management applications such as debugging and reactive control tools to improve the application
performance and reliability. A large volume of events may be generated due to the extensive demands of
the monitoring applications and the high interaction of LSD systems. The monitoringarchitecture employs a
high-performance event filtering mechanism to efficiently process the large volume of event traffic generated
by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow
in the system and distributing the monitoring computation. Our architecture also supports dynamic and
flexible reconfiguration of the monitoring mechanism via its instrumentation and subscriptioncomponents.
As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the
performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for
collaborative distance learning.

The filtering mechanism represents an intrinsiccomponent integrated with the monitoringarchitecture to
reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring
process.

We are developing an event filtering architecture to efficiently process the large volume of event traffic
generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to
monitor collaborative distance learning application for obtaining debugging and feedback information. Our
architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed
systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering
mechanisms in supporting monitoring LSD systems and (2) devising an integrated scalable high-
performance architecture of event filtering that spans several key application domains, presenting
techniques to improve the functionality, performance and scalability. This paper describes the primary
characteristics and challenges of developing high-performance event filtering for monitoring LSD systems.
We survey existing event filtering mechanisms and explain key characteristics for each technique. In
addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will
improve key aspects of event filtering.



Summary

The demands of large-scale distributed (LSD) systems is increasing. There are two main influential factors
that encourage employing such applications in many domains: the advances in the Internet and the Intranets
technology and the economical and performance benefits of distributed applications, in general. Examples of
LSD systems include large-scale collaborative distance learning, video conferencing, group-ware editing,
distributed transaction systems and distributed interactive simulation. LSD systems involve a large number
of users or application entities which are geographically dispersed over interconnected LANs (i.e. Intranets)
or over WAN (e.i. Internet). Such applications enable more interaction and resource sharing that go beyond
the limitation of long geographical distances. For instance, in large-scale distance learning and training
applications, a large number of students who may be far distant from each other can share the same benefit
of attending a course, and exchanged experiences regardless of the distance or the number of participants.
Similarly, database systems (such as banking systems) can increase its computational and data storage
capacity by utilizing large-scale transaction systems.

Due to the distributed nature and the large number of participants or application entities in LSD system,
reliability and performance of such applications become critical issues. The wide geographical distribution
and large interaction of such applications may sometimes increase the possibility of failures/errors or
performance bottlenecks. Unlike centralized or isolated applications, LSD systems are likely to deal with
different environments that may be dynamically changing. For these reasons, observing the run-time
behavior of LSD systems is essential to discover reliability and performance problems and initiate the proper
reactions to alleviate these problems. These actions are performed either at run-time such as fault recovery
and applications steering or at development-time such as fixing bugs and design enhancements.

The LSD system developers or managers (could be human or software components) require feedback
information on the system behavior for testing and debugging purposes or for fault recovery and
performance tuning procedures. Monitoring LSD systems is an effective means to observe applications at
run-time and provide this feedback information to the system developers and system managers in order to to
improve reliability, robustness and performance of LSD systems.

In LSD system, a large number of events is generated by the system components (e.g. processes) during its
execution or interaction with an extemal objects such as users or other applications. These events represent
the run-time behavior of LSD systems. In centralized or isolated systems, developers express these events
via "print" statements or via using any generic debugger tool (e.g. gdb) for monitoring and inspecting the
application behavior. However, in LSD systems, monitoring is much more complex because events can be
concurrent and distributed in the application environment. In other words, unlike centralized or isolated
systems, events that may represent application errors or bugs may be correlated and distributed over many
locations. For example, application errors related to the communication operations obviously involve
observing the sender(s) and the receivers(s). Similarly, the knowledge of application performance is also
distributed in the application environment. For instance, calculating the average load of the system must
involve all participant machines. Thus, concurrency and distribution of events makes the tasks of testing and
management decisions much harder.

Unlike centralized or isolated systems, in LSD environment, errors/failures events (due to software bugs or
improper implementation) or events that convey the application status can be dispersed over many different
locations and application entities which makes the task of testing and debugging or management decisions
process (e.g. fault recovery or performance tuning procedures) much harder to achieve in LSD systems.

Furthermore, the monitored events, either simple (local) or complex (global) events, which may encounter
network latency and clock skewing problems. The large volume of event traffic which flows in the system
may swamp the monitoring process.

In this thesis, we present a scalable high-performance architecture for monitoring interesting local and global
events of LSD systems and disseminating the monitoring information dynamically to the subscribing
monitoring applications such as distributed debugging and reactive control tools which subsequently would
effectively improve the robustness (via debugging), the reliability (via fault recovery), and the performance
(via performance tuning and application steering). Although our main focus in this proposal is on these
monitoring applications: reliabilityand performance tuning, the proposed monitoring architecture can be



usedfor many other monitoring applications such as security and correctness checking. We show how the
design can satisfy the work objectives of supporting a scalable, high-performance, dynamic, flexible and
non-intrusive architecture for monitoring large-scale distributed systems. Various optimization techniques
are proposed for the event filtering mechanism to increase the scalability and the performance of the
monitoring process and minimize overhead on the computation and the network resources which in turn
reduces the intrusiveness of the monitoring operations. We show an emphasis in studying and designing the
filtering component of the monitoring architecture, since the event filtering mechanism is an intrinsic
component that has a significant impact on the monitoring performance and scalability. Our monitoring
architecture provides a simple mechanism to prepare (i.e. instrument) the monitored applications for
capturing and reporting generated events with a minimal intervention from the application developers. It also
supports a dynamic monitoring by enabling the monitoring applications (e.g. managers) to dynamically
change their monitoring requests (called subscription) at run-time. The monitoring architecture provide a
flexible service by providing priority-based event monitoring service where events are processed based on
their priorities and adjustable instrumentation mechanism (e.g. adjusting the event reporting rate).

Although there is a considerable amount of research work on monitoring in general and monitoring
distributed and parallel applications in specific, the proposed systems are insufficient for satisfying our
design objectives and supporting a scalable, high-performance, dynamic, flexible and non-intrusive
monitoring architecture for large-scale distributed systems.

Debugging Example in Monitoring IRI Application
In this section, we show an example of using the monitoring architecture for testing and debugging IRI
application. The goal of this example is to illustrate more the monitoring process and show how our
monitoring architecture can be used effectively and easily for testing and debugging purposes. Many other
examples of this application or other monitoring applications can be developed by following the a similar
procedure.

The IRI application is collaborative distributed applications where exchanging messages is a major activity
in the system. The Reliable Multicast Protocol Server (RMPS) is the main communication module in IRI
application. In such message-based applications, it is very likely to encounter a mismatch in message sizes
because of errors in sending/receiving operations such as type mismatch between the sender and
the receiver(s) or the kernel alignment of sent packet[gif]. Therefore, debugging "send" and "receive"
operations is highly desired in such message-based distributed application such as IRI as well as any
client/server application, in general. Thus, our debugging example is monitoring the send and receive
activities (events) in RMPS and reporting information about any mismatch in sent and received message
sizes. In this monitoring example, the consumer(s) could be the developer(s) and RMPS entities are the
event producers. This example represent a composite event since the knowledge of sent/received message
sizes is distributed in the IRI virtual classroom. In the following, we describe how this monitoring example is
constructed and processed in IRI application environment.

Filter Subscription in HFSL: A developer may define his/her filter subscription as follows:

FILTER= [tex2html_wrap_inline2827]
[(MSend.IPsrc = [tex2html_wrap_inline2831] = [tex2html_wrap_inline2833]
[tex2html_wrap_inline2835]
The MSend and MRec are the multicast send and receive events respectively. The Report_Mismatch action
is a function or program that will send the monitoring information to the developer reporting the occurrence
of this event.

Event Specifications in HESL: The send multicast event (called MSend) and the received multicast event
(called MRec) may be specified respectively as follows:

EVENT= [tex2html_wrap_inline2837] Module_Name=RMPS, Func_Name=Send, NULL, Immediate;

IPdest=224.*.*.*, IPsrc=ANY [tex2html_wrap_inline2839] MSend.



EVENT=[tex2html_wrap_inline2837]Module_Name=RMPS,Func_Name=Receive,NULL,Immediate;

IPdest=224.*.*.*, IPsrc=ANY[tex2html_wrap_inline2839]MRec.
RMPSInstrumentation:TheRMPSsendandreceiveroutinesareinstrumentedtoreportinformationabout
anysendandreceiveeventsaccordingtotheevent specifications: event name, message sequence
number, IP source address and size of sent and received message. These fields are used in the filter
definition (program).

This shows the filtering internal representation after the filter is decomposed and distributed between the
monitoring agents. The filter is decomposed to three subfilters: F1 which detects receiving multicast events
and forwards it to its DMA, F2 which detects sending multicast events and forwards them to all DMAs, F3
which is responsible for evaluation the filter expression by comparing the receiving and the sending
multicast events. If the composite event represented by Msg_Mismatch_FILTER is detected, then F3 will
forward the monitoring information to the developer(s) as requested. Notice that sending and receiving
events can take a place at any machine (RMPS resides on every machine in IRI application). Therefore,
based on the Environment Specifications, the F1 and F2 subfilters are delegated to all LMAs in the virtual
classroom. However, F3 are delegated to the DMAs which get the MSend and MRec events and evaluate
the filter expression accordingly. The extracting layer in th figure is just to forward only the relevant
information and reduce the event traffic. Finally, the requested monitoring information is forwarded to one or
more developers based on their subscription. This simple example shows how a developer can effectively
define and monitor IRI application activities at run-time and collect the desired debugging information from
various locations in the application environment without the hassle of analyzing multiple traces or inspecting
the application entities at different locations.

Publications

"Interactive Distance Learning over Intranets", (with H. Abdel-Wahab, C.M. Overstreet, C. Wild, A. Gupta, A.
Youssef, E. Stoica, E. AI-Shaer and R. Talla), IEEE Journal of Internet Computing, Vol. 1, 1, Jan. 97, pp.
60-71

"Virtual Classrooms and Interactive Remote Instruction" (with C. Wild, C.M. Overstreet, H. Abdel-Wahab, A.
Gupta, A. Youssef, E. Stoica, R. Talla, A. Prabhu), International Journal of Innovations in Education and
Training, Vol.34, 1, pp. 44-51, 1997

Multimedia Modeling, World Scientific Publ. Co, Nov. 96, Edited by J. P. Courtiat, M. Diaz, P. Senac:
Multimedia Integration into a Distance Learning Environment (with H. Abdel-Wahab, E. Stoica), pp. 69-84,
see also 11,74

"The Role of Multicasting in Interactive Multimedia Distance Learning Systems", (with H. Abdel-Wahab, E.
Stoica and A. Youssef), Journal of Network and Systems Management: Special Issue on Multimedia
Network/Service Management, Vol.3, No. 5, 1997

"Web Based Framework for Parallel Computing", (with Z. Chen, P. Mehrotra, P.K. Vangala, M. Zubair),
Journal of Concurrency Practice and Experience, Wiley, Vol 9, Nov. 1997

"Use of Web technology for interactive remote instruction", (with C. M. Overstreet, A. Gonzalez, M. Denbar,
R. Cutaran, N. Karunatrane, C. J. Srinivas), Computer Networks and ISDN Systems, Vol. 30, 1-7, pp. 660-
662, April 1998

"Adaptive Object-Oriented Filtering Framework for Event Management Applications", (with Ehab Al-Shaer,
Mohamed Fayad, Hussein Abdel-Wahab), to appear in Journal of ACM Computing Survey, December,
1998


